IN THIS ISSUE

Member Profile: Wilbur Bradley
Banquet Photos

CHERT RESERVOIRS IN THE COWLEY FORMATION

Page 14
Mid-Continent: ARE YOU READY?

Exploration and development activity is on the rise. As you seek to capitalize on the industry’s momentum, don’t let well log data get in the way. No company has removed more barriers between people and their well log data than TGS Geological Products and Services. With coverage of all the crucial wells in the Mid-Continent, North America and hydrocarbon provinces worldwide, TGS will get you ready for the opportunities to come.

www.tgsnopec.com
Table of Contents

Features:

Member Profiles:
Wilbur Bradley ..10

CHERT RESERVOIRS IN THE COWLEY FORMATION
(MISSISSIPPIAN) Mazzullo, Cao, Wilhite.....................14

Book Review

Departments & Columns:

President’s Letter ... 7
From the Manager... 9
Professional Directory 19
Advertiser’s Directory 17
KGS Tech Talks .. 4
Kansas Geological Foundation 23
Exploration Highlights 21
KGF Memorials.. 26

ON THE COVER:

A now common scene of a well being drilled in our beautiful state—this one is in the Red Hills, Barber County

CALL FOR PAPERS

The Kansas Geological Society Bulletin, which is published bimonthly both in hard-copy and electronic format, seeks short papers dealing with any aspect of Kansas geology, including petroleum geology, studies of producing oil or gas fields, and outcrop or conceptual studies. Maximum printed length of papers is 5 pages as they appear in the Bulletin, including text, references, figures and/or tables, and figure/table captions. Inquiries regarding manuscripts should be sent to Technical Editor Dr. Sal Mazzullo at salvatore.mazzullo@wichita.edu, whose mailing address is Department of Geology, Wichita State University, Wichita, Kansas 67260. Specific guidelines for manuscript submission appear in each issue of the Bulletin, which can also be accessed on-line at the Kansas Geological Society web site at http://www.kgslibrary.com
Spring 2008

*Please Note: Most Tech Talks Will Be On *Tuesdays* This Spring*

Mar. 11—Don Whitmore, “Fate & Identification of Oil-brine Contamination in Different Hydrogeologic Settings”

Mar. 18—Joel Walker, Hutchinson Cosmosphere

Apr. 15—Rick Taylor, Shreveport, LA, “Inconvenient Evidence, Global Warming Goes On Ice”

Apr. 22—AAPG Convention in San Antonio, TX

Apr. 29—Dan Hitzman, Tulsa, OK, “Hydrocarbon Microseepage Surveys in Kansas: Reconnaissance to Prospect Evaluation Strategies?”

May 13—Susan Nissen

May 20—TBA

May 27—TBA

Attention!

Location for Technical Meetings

All KGS technical presentations are held at 12:30 p.m. at the *Wichita Bar Association*, located at 225 N. Market, ground floor conference room, unless otherwise noted.

Note: For those geologists who need 30 points to renew their licenses, there will be a sign-in sheet at each presentation and also a certificate of attendance.
CAN YOU NAME THE CRITTER?

Sponsored by Trilobite Testing, Inc.

Is your paleo up to date?

If you know the name of the trilobite, submit your guess to Wes Hansen at 316-263-7313 or via e-mail at manager@kgslibrary.com. Remember that Trilobite Testing is sponsoring your efforts, so be sure to thank Paul Simpson the next time that you see him.

Bulletin committee members and PhD’s in Paleontology are prohibited from entering.

THE KANSAS GEOLOGICAL SOCIETY WISHES TO THANK THE FOLLOWING FOR SUPPORTING THE ANNUAL BANQUET

Abercrombie Energy, LLC
American Energies Corp.
Don Beauchamp
Coral Coast Petroleum, LC
Robert D. Cowdery
Alan DeGood
Edmiston Oil Company, Inc.
Fred James, III
Dick Jordan
Tom Hansen
Roger L. Martin
Walter H. Martz
Roger McCoy
Elbie McNeil
Gus Messenger
Mike Mitchell
Joseph E. Moreland, Jr.
George Mueller
Mull Drilling Company, Inc.
Pintail Petroleum, Ltd.
Larry Richardson
A. Scott Ritchie
Bill Shepherd
President’s Letter

Dear Members,

As we look forward to spring and warmer weather I think of the fact that oil closed at $100.74 per barrel today. This is a bit of a mixed blessing; you can not help but think about drilling wells for these prices but in this election year I feel like we have a target painted on our backs; only time will tell. This price should keep the already busy library more so.

The digital library is in “Beta Testing”. This means that it is out to a handful of users within the Society that can evaluate the features and look for any bugs within the program. After the bugs have been worked out, the program will go out to the digital membership. The Beta Testing phase should get any of the problems fixed well before a less than technical person such as myself have a chance to get in trouble way over my head.

I want to thank all that showed up for the technical talk I gave in February. It was a nice crowd and there were even questions that I could answer. This brings me to the thought that these talks are kind of like the saying about books. They say everyone has a potential book in them or at least a series of short stories. The same goes for technical talks or articles for the bulletin. Almost everyone has field they have worked on that could become a talk or article for the bulletining. PowerPoint makes the talks much easier to do and Sal’s expertise makes the articles for the bulletin something we all can do.

Speaking of involvement, in April the AAPG will be held in San Antonio, Texas. A great place to go for a convention; no matter how many of these I attend there is always something new and exciting to look at. For those that have never attended a national convention this would be a good one to go to. The dates of the convention are April 20th-23rd. See you there.

Respectfully submitted,

Ernie Morrison
The Kansas Geological Society

Is proud to announce

Walters Digital Library’s new software

For Information on Joining….316-265-8676

GEOCARE

Benefits

Security for AAPG Members
& Their Families
Through Group Insurance

Life
Health
Dental
Disability
And Supplemental Plans

AAPG’s
GeoCare Benefits Insurance Program
P. O. Box 9006
Phoenix, AZ 85068-9006
800-337-3140
E-mail: geocarebenefits@agia.com
www.geocarebenefits.com

JMC

WELL LOGGING & LEASING
UNMANNED GAS DETECTORS
MUD LOGGING
CERTIFIED INSTRUMENT TECH
SERVING THE KAN-O-TEC AREA
SINCE 1990

AUSTIN GARNER MARLA GARNER

24-HOUR PHONE (620) 873-2953
MEADE, KANSAS

www.kgslibrary.com
Dear Members,

The spring of 2008 looks to be a continuation of good times for our industry. The library is staying very busy with orders and processing all of the new data coming our way either by operators or the KCC. We are investing in some new printers to keep things moving along and to be able to offer more services to you, our members.

We will be attending the AAPG annual convention again this year. It is being held in San Antonio and I am looking forward to seeing many of you members from outside Kansas. For those of you attending, we will be in booth 3154. If you have any time to give while you are there, we would love to have you spend some time in the booth or just stop by to say hi.

We also plan to have a booth at a new event this year; the first annual Mid-Continent Prospect Expo in Oklahoma City May 6th & 7th. There is an advertisement for this on page 12 and more information on our web site.

We are still processing the “catch up” boxes from the KCC but the girls have made great headway on them. We are also fine tuning the new digital software and have had several people testing it out for us. The final go live date is coming up! I want to again thank those of you who have been so patient in waiting on this new version of the software.

We had a very nice turn out for the KGS Banquet which was held on January 25th. Look for some pictures of the event throughout this publication.

Respectfully submitted,

Rebecca Radford
Manager
The time has arrived to profile a native Wichitan and one of the most prominent operators/geologists of the city, Wilbur Bradley.

Wilbur was born July 20, 1937 to Millie and O.E. Bradley. His father was from northern Oklahoma and was an attorney by profession, but worked primarily as a landman. His mother was originally from Weatherford, Oklahoma. The family moved to Wichita in 1925. Wilbur has two sisters: Mary Lou Owens now residing in Palm City, Florida and Margie Lee Swengel of Haven, Kansas. He attended Hyde Elementary, Robinson Intermediate and East High School where he graduated in 1955. Being influenced by his father who was involved in the oil industry and took him to wellsites, Wilbur enrolled at the University of Oklahoma in Geology and was a student there from 1955 until 1961, receiving both a Bachelor of Science and a Master’s in Geological Engineering. In the summers while enrolled at OU, he was employed by Shell Oil Company: 1st summer in Oklahoma City and 2nd in Wichita where Bob Euwer was his boss. Enrolled in OU during this period were KGS members Mack Knighton and Dean Seeber. Wilbur was later to work with Dean on many prospects in Eastern Kansas, but was not acquainted with him when they were in school. He recalls several professors who he believes were excellent educators: Dr. David Kipps, Vertebrate Paleontologist, Dr. Carl Moore, one of his thesis advisors, and Dr. Harris who taught sample studies. Wilbur remembers Dr. Harris giving as an exam, ground-up coke bottles and mudballs from the South Canadian River and asking the class to describe them.

After graduation, Wilbur joined the California Company, a division of Standard Oil of California in New Orleans, before returning to Wichita in June of 1962. Since returning, he has been a Consulting Geologist devoting a considerable amount of time and effort to exploring and producing in Eastern Kansas in conjunction with Dean Seeber.

In 1957 while enrolled at OU, Wilbur married Nancy Reeves of Texarkana, Arkansas. They have two children: Mike who works with Wilbur in operating White Pine Petroleum and Dana, a wildlife biologist in Crested Butte, Colorado.

Professionally, Wilbur has been very active in the Society of Independent Professional Earth Scientists (SIPES). He has served as President of the Wichita Chapter, served two terms on the National Board including holding the office of Secretary. He has also been National President of the SIPES Foundation. Locally, Wilbur has served on the Board of the Petroleum Club.

For eleven years Wilbur was in charge of the seminar that the Kansas Securities Commission office provided for the purpose of providing their investigators information about the Oil and Gas Industry. Also in attendance at these seminars were postal inspectors, County Attorneys, Attorney Generals from other states, KBI personnel and Security Commissioners from other states.

Other organizations in which Wilbur has been active include: Rotary Club, University Congregational Church and various Masonic bodies including the Shrine.

Looking back at his life as a consulting geologist, Wilbur remembers several tests both puzzling and interesting. He mentions test in South Louisiana, near Crowley that was the first well drilled on a salt dome that penetrated the dome and took sidewall cores in the salt. Wilbur says this was a “fun well”. One of the most puzzling and challenging tests was in Butler County. He had no drilling time or samples and it was necessary to repair a leak in the surface casing before any information could be obtained.

Like all geologists, Wilbur encountered characters in the “oil patch”. He believes perhaps the biggest one, Oscar
Koepke, who was a “doodlebugger” in Eastern Kansas, but who was also very savvy about oil and geology.

There isn’t any doubt in Wilbur’s mind that if he had it all to do over, he would still be a Petroleum Geologist. He has enjoyed it so much that he hasn’t any plans to retire.

It isn’t “all work and no play” with Wilbur. He likes to travel, particularly to his favorite fishing spots in Colorado and Canada. He has made fifteen trips to Canada.

This short profile really doesn’t tell the full story of this successful geologist who has been so much a part of our profession and industry.

The Kansas Geological Foundation awarded Mrs. Lois Eppich of Seneca, Kansas, with the Science Teacher of the Year Award at this years annual Banquet.

Ken Dean, outgoing president of the Kansas Geological Foundation thanks Mrs. Earl Knighton for the Knighton Family donation to the Foundation.
Mid-Continent
PROSPECT EXPO ‘08
Presented by
OIPA

May 6 & 7, 2008
Oklahoma City
Cox Business Services Convention Center

We welcome aboard

Prospects, Properties & Presentations

Join us for this soon to be sold out event.

Sponsors, Exhibitors & Attendees Sign Up Now!

Paul Smart, Director: 405-478-0404
Members visiting at the banquet

Burt Gowdy
Technical Sales Engineer

Open Hole Wireline Services
Servicing KS, OK, TX & AR

2409 South Purdue Drive
Oklahoma City, OK 73128
Fax: (405) 601-5737
Cell: (405) 514-0643
24 hr. Dispatch 1-918-645-1091

Email: Burt.Gowdy@TuckerEnergy.com
http://www.TuckerWireline.com

Tucker
WIRELINE SERVICES
“Setting The New Service Standard”

Olsson Associates
Well Site Supervision
Geologic Consulting
Environmental Permitting
Surveying
Pipeline Controls Design
GIS
Geotechnical Engineering
Hydrogeology
Water Resources Engineering
Water/Wastewater Engineering

Colorado • Kansas • Nebraska
Jeff Johnson, Ph.D., Geologist - 402-458-5907
Clayton Erickson, Geologist - 308.995.8706
Dave Weinert, Geologist - 308.995-8706
www.oaconsulting.com

Additional Services:
Municipal Consulting
Land Development

Paragon Geophysical Services, Inc.
~The TOP CHOICE for 3D SEISMIC~

PHONE (316) 636 - 5552 FAX (316) 636 - 5572
3500 N. Rock Rd., Bldg 800, Suite B
Wichita, KS 67226
paragon@paragongeo.com
CHERT RESERVOIRS IN THE COWLEY FORMATION (MISSISSIPPIAN), SOUTH-CENTRAL KANSAS: PARAGENESIS, OXYGEN AND SILICON ISOTOPE GEOCHEMISTRY, AND TIMING OF SILIFICICATION AND POROSITY FORMATION

S. J. Mazzullo1, Hongsheng Cao1, and Brian W. Wilhite2

1Department of Geology, Wichita State University
Wichita, KS 67260
2Woolsey Operating Company LLC
Wichita, KS 67202

ABSTRACT

The productive Cowley Formation in Rhodes Field is a depositional sequence between the underlying Osagean and overlying Meramecian sequences. The Cowley sequence internally is cyclic and punctuated by unconformities. Within each cycle, lithologies shallow upward from basinal dark spiculitic shale, to lenticular and/or flaser-bedded spiculite in matrices of dark gray shale (slope deposits) to shallow platform bedded spiculite, locally with some fossils. Three generations of replacement chert are recognized in the rocks (1st, 2nd, and 3rd), and their interpreted origins are based on observable paragenetic relationships in the rocks, and stable $^{18}\text{O}/^{16}\text{O}$ and ^{30}Si geochemical compositions. The 1st-generation chert precipitated essentially syndepositionally from marine pore fluids in shallow-buried sediments. These rocks have the most enriched ^{18}O and ^{30}Si compositions. The 2nd and 3rd-generation cherts have progressively more depleted ^{18}O and ^{30}Si compositions, and they precipitated from mixed meteoric-marine to progressively more meteoric groundwaters during periods of sea-level fall and eventual lowstand subaerial exposure. Secondary reservoir porosity in the rocks was created by dissolution mainly between the 2nd and 3rd chert generations, and it its origin is allied to subaerial exposure.

INTRODUCTION

Mississippian siliceous rocks, including cherts (and Achatina), locally are prolific oil and gas reservoirs throughout Kansas, especially where they are in close proximity to the pre-Pennsylvanian unconformity (Montgomery et al., 1998). General depositional, diagenetic, and petrophysical attributes of Mississippian chats were described most recently by Montgomery et al. (1998) and Watney et al. (2001). The focus of the present study is a specific group of sub unconformity, siliceous rocks that is productive in south-central Kansas, namely, the Cowley section. The so-called Cowley Formation (Lee, 1940) was considered by Lane and DeKeyser (1980), and subsequently others, to be outer-shelf and shelf-margin lithofacies equivalents of shallow-shelf carbonates to the north. According to Maples (1994), the Cowley is Kinderhookian to Meramecian in age. Recent work by Wilhite et al. (2007) in south-central Kansas, however, suggests alternatives to these contentions. That is, the Cowley is not a deeper-water facies of up-dip platform carbonates. Rather, it comprises an unconformity-bound depositional sequence of spiculitic strata that overlie typical cherty Osagean carbonates and cherts, and in turn, are over lain by somewhat less-cherty Meramecian carbonates (Figure 1). As such, the Cowley should again be regarded as a formation within the Mississippian as was originally suggested by Lee (1940). Although the Cowley was deposited during several cycles of transgression and highstand (regression), the extent of coastal onlap (that is, the relative magnitude of sea-level rise) during deposition was considerably less than during Osagean and Meramecian times (Figure 1). Cowley rocks have produced prodigious amounts of gas, and some associated oil, throughout much of Barber County. Neither Montgomery et al. (1998) nor Watney et al. (2001) described the Cowley sensu stricto in their studies, hence, the origin of chert and porosity in this economically important group of rocks has not been evaluated.

This study discusses the types and origin of chert, timing of silicification, and the timing of porosity formation in these rocks. Conclusions were based on paragenetic relationships (that is, relative timing of diagenetic events observable in the rocks) and inferences from stable oxygen and silicon isotope compositions of the cherts (Mazzullo et al., 2007). The section was examined and sampled initially in three long, continuous cores and additional shorter cores taken in the Cowley in Rhodes Field in Barber County. This field, which to date has produced 12.5 MMBO and 109.7 BCFG (primarily from the Cowley but locally also the Viola, Lansing-Kansas City, Douglas, Shawnee, and Elgin), is along the Pratt Anticline. Toward the north-northwest, progressively older rocks are eroded from the Precambrian crystalline core of the Central Kansas Uplift, including cherty or otherwise siliceous Mississippian, Viola, and Arbuckle...
strata. The Cowley in Rhodes Field was examined by Clark (1956), and most recently by Mazzullo et al. (2007) and Wilhite et al. (2007). According to the latter two studies, the Cowley comprises several progradational and aggradational highstand depositional cycles separated by relatively minor lowstand unconformities (Figure 1). In a complete section, each cycle shallows upward from: (i) basinal dark spiculitic shale; (ii) lenticular and/or flaser-bedded spiculite in matrices of dark gray shale (slope deposits) to green shale (moderate water-depth, outer-platform deposits). These rocks locally are glauconitic and dolomitic; and (iii) bedded spiculite, locally with some fossils (mainly crinoids) in rarely preserved innermost-platform deposits at the very top of the section. In addition to siliceous spicules, the rocks include multiple generations of chert. Within each cycle the amount of chert and porosity in the rocks both increase dramatically in up-dip directions toward cycle-bounding unconformities. Similar relations were described in non-Cowley chats in south-central Kansas by Watney et al. (2001).

![Diagram of strata and facies](image)

Figure 1. - Diagrammatic representation of the geometry of stratal units, and facies and inferred depositional environments in the Cowley in the Rhodes Field and adjoining area in Barber County, Kansas (based on Wilhite et al., 2007). Relative sea-level curve on the left indicates that the Cowley sequence was deposited during a lower sea-level highstand than during deposition of the underlying Osage and overlying Meramec.

INFERENCES BASED ON THE OBSERVABLE PARAGENETIC SEQUENCE

The spicules in the rocks examined appear to have been composed initially of biogenic (hydrated) silica. As in other spicule-rich Mississippian rocks in Kansas, the fossil source of these spicules is presumed to have been sponges (e.g., Thomas, 1982; Rogers et al., 1995; Watney et al., 2001; Franseen, 2006). Paragenetic study of the Rhodes Field cores suggests that there are three main generations of silicification in the spiculitic rocks (1\(^{st}\), 2\(^{nd}\), and 3\(^{rd}\)), and they are present in bedded spiculite and lenticular/flaser-bedded spiculitic deposits.

1\(^{st}\)-generation chert

This chert occludes much primary interparticle micro-porosity between spicules and at least some of the primary micro-intraparticle porosity within initially hollow spicules. Such silicification resulted in the conversion of unconsolidated spiculitic sediment to chert (Figure 2A). In many cases the silicified spiculites are transected by thin calcite-filled cracks, commonly later replaced by opaque white chert, that subsequently were deformed by soft-sediment deformation due to mild mechanical compaction. Lenses of 1\(^{st}\)-generation-silicified spiculite in the lenticular/flaser-bedded deposits also locally deformed surrounding argillaceous sediments. Additionally, in associated shales in these deposits there locally are nodules (3"-3" diameter) of coarse crystalline, replacive calcite that in turn were later partly to completely replaced mimetically by opaque white and locally translucent chert. Displacive growth of these calcite nodules also locally deformed surrounding sediments (Figure 2B). Together, these attributes of the 1\(^{st}\)-generation chert and calcite nodules suggest that they formed as a result of early silicification and calcitization, respectively, within shallow-buried, unconsolidated sediments.

(Continued on page 16)
2nd and 3rd-generation cherts

The 2nd-generation chert is opaque and light gray, locally with a slight blue tint. It is present either as scattered small (few mm) to larger poikilotopes within 1st-generation chert in some sections of core, or more commonly, it nearly pervasively replaces that chert (Figures 2C and D). The chert that partly to completely replaced early-formed calcite nodules in lenticular/flaser-bedded deposits locally abuts against and slightly deforms 1st-generation-silicified spiculite lenses. Hence, this chert probably also is of 2nd-generation origin. Most of the secondary porosity in the rocks, discussed below, post-dates the 2nd-generation chert, and locally is partly occluded by the 3rd-generation chert.

The 3rd-generation chert is light yellowish tan and opaque. It typically either partly replaces earlier chert generations, or light green shale that infilled original inter-clast pores within chert-clast breccias (Figures 2C and D). The origin of these breccias will be discussed in a forthcoming paper. Such breccias are present in close proximity to the pre-Pennsylvanian unconformity, and locally, some of the more subtle unconformities within the Cowley section. Component chert clasts in these breccias consist entirely of 1st- and 2nd-generation cherts that are Ahealed by 3rd-generation chert.

Chert Stratigraphic Distributions

The amount of 2nd and 3rd-generation cherts in the Cowley increases in an up-dip direction toward unconformities within the Cowley section and also the pre-Pennsylvanian unconformity. The 3rd-generation chert is present almost exclusively in very close proximity to these unconformities, whereas the 2nd-generation chert extends farther down-dip, below the unconformities, within the Cowley. These attributes of chert distribution seemingly suggest a causative relationship between silicification generations 1 and 2 and subaerial exposure. The amount of 1st-generation chert in the lenticular/flaser-bedded deposits and bedded spiculites, excluding breccias, instead decreases in an up-dip direction, suggesting that this stage of silicification was not temporally related to subaerial exposure.

Relevance of Breccias and Basal Cherokee Reworked Breccias/Conglomerates

The breccias in the rocks (Figure 2D) contain clasts of commonly fractured 1st and 2nd-generation chert, which suggests that these stages of silicification occurred prior to exposure and brecciation. Where present, overlying basal Cherokee rocks include chert-clast breccias or conglomerates wherein the commonly rounded and peripherally-oxidized clasts were derived from a number of sources (e.g., from the Viola and Arbuckle), including 1st-, 2nd-, and 3rd-generation Mississippian cherts. The presence in these rocks of the latter cherts indicates that silicification of Mississippian rocks occurred prior to Cherokee time.

STABLE OXYGEN AND SILICON ISOTOPE GEOCHEMISTRY

The ratios of 18O and 16O (in l relative to SMOW B Standard Mean Ocean Water) and the amount of 30Si in the cherts assist in constraining interpretations of the site and timing of silicification in the rocks. For this purpose, samples were collected of the 1st, 2nd, and 3rd-generation cherts from two of the long, continuous cores in Rhodes Field (the Continental #10 Harbaugh and Continental #15 Harbaugh). A plot of gross 18O/16O compositions versus depth in the cores (Figure 3A) shows scatter of data from 21-33l but with no significant change in isotope composition relative to depth, and also no significant variation in compositions between the two cores sampled. These data are interpreted to suggest that the fluid chemistry of silicification was relatively simple, and that is was mostly similar from core to core. Plotting 30Si versus 18O/16O (Figure 3B) suggests a trend of slight depletion in 30Si from the 1st-generation cherts to the 3rd-generation cherts. This trend is accompanied by 18O/16O compositions that also show slight but progressive depletion in 18O from the 1st-generation cherts to the 3rd-generation cherts; and the most isotopically-enriched of the cherts is the 1st generation chert (as indicated in the following summary table taken directly from Figure 3B):
Figure 2. - Rock slabs of representative Cowley cores from Rhodes Field. White scales are 1” in length and positioned at stratigraphic top of samples. (A) 1st-generation silicified spiculite lenses in lenticular/flaser-bedded spiculitic and siliculsh shale. (B) In lower right and near the middle, early calcite nodules that deformed surrounding sediment. Initial calcite (stained red with Alizarin) later was mostly but not entirely replaced by opaque white chert. (C) Three chert generations (labeled 1st, 2nd, and 3rd) in bedded spiculite. Arrows point to some poikilotopes of blue-tinted, 2nd-generation chert. (D) Close-up of breccia showing the three chert generations (labeled 1st, 2nd, and 3rd). Note that the space between two ends of a fractured clast was infilled with detrital 1st-generation chert, detrital poikilotopes of 2nd-generation chert, and green shale, and then these components were occluded by 3rd-generation chert. Oil-stained micro-porosity that formed between the 2nd and 3rd chert generations is indicated by black arrows. The 3rd-generation chert tends to occlude secondary porosity in the rocks, and in most cases it replaced infilling green shale between the chert clasts.
Chert Generation	Range $^{30}\text{Si(1)}$	Range $^{18}\text{O}/^{16}\text{O(I)}$
1st | 0.3 to 0.5 | 28.4 to 29.7
2nd | 0.1 to -0.9 | 26.7 to 27.0
3rd | 0.1 to -0.9 | 24.1 to 25.1

Inferred Timing and Origin of 1st-Generation Chert

Based on the inferred paragenetic sequence the 1st-generation chert formed early, soon after deposition, in shallow-buried sediments. Accordingly, that this chert has the most enriched ^{18}O composition (28.4 to 29.7) is interpreted to suggest that silicification occurred in the shallow-burial, sub-sea floor environment soon after sediment deposition, with silica precipitated by slightly-modified marine pore fluids. Such early (essentially syndepositional) silicification likely was promoted by the inherent instability (by virtue of high solubility) of biogenic silica B that is, dissolution of at least some of the biogenic silica spicules and its re-precipitation as more stable chert. Such diagenetic processes, including associated precipitation of some carbonates such as in the early-formed calcite nodules in the rocks (Figure 2B), are very common in shallow-buried, typically organic-rich, fine-grained marine sediments (e.g., Pisciotto, 1981a, b). The most enriched ^{30}Si compositions of the 1st-generation cherts (0.3 to 0.5) likewise are interpreted to be primary values of silica precipitated by marine pore fluids.

Inferred Timing and Origin of 2nd and 3rd-Generation Cherts

Precipitation of the 2nd and 3rd-generation cherts clearly post-dated the 1st-generation chert, and moreover, these cherts seemingly are related genetically to unconformities within the Cowley section and to the pre-Pennsylvanian unconformity. As indicated in Figure 3B and the table above, the $^{18}\text{O}/^{16}\text{O}$ compositions of the 2nd and 3rd-generation cherts show progressive depletion in ^{18}O compositions relative to that of the 1st-generation chert, with values from 26.7 to 27.0l and 24.1 to 25.1l, respectively. Such ^{18}O depletion is interpreted to reflect 2nd-generation silicification by mixed meteoric-marine (brackish) fluids, followed by progressively more meteoric influx accompanying sea-level fall and eventual subaerial exposure and precipitation of 3rd-generation cherts within the groundwater diagenetic system. Hence, whereas the 1st-generation cherts precipitated from marine pore fluids, the subsequent cherts reflect the evolution of groundwater diagenetic fluids from being of mixed marine-meteoric composition to fully meteoric composition (Figure 4).

Sources of Silica

Rocks in the Cowley section are inherently rich in silica in the form of originally biogenic siliceous spicules and detrital silt- to clay-sized grains in associated shales. Remobilization of just this silica via dissolution and re-precipitation can readily account for a large part of the chert in these rocks. Dissolution and re-precipitation likely occurred first in the marine environment by dissolution of unstable spicules, and later by dissolutional-cannibalization of detrital silica and of earlier-formed 1st-generation cherts in subaerially exposed, up-dip portions of the Cowley during sea-level falls. The slight depletion in ^{30}Si accompanying ^{18}O depletion from the 1st-generation cherts (0.3 to 0.5) to the 2nd and 3rd-generation cherts (0.1 to -0.9) is interpreted to reflect the addition of dissolved silica to the groundwater geochemical system derived from these sources as well as from older siliceous rocks exposed along the crest of the Central Kansas Uplift to the north-northwest.

POROSITY TYPES, ORIGIN, AND RESERVOIR PETROPHYSICS

There are two main types of matrix porosity in the Cowley spiculites B primary and secondary. Primary pore types are very small B hence they represent micro-porosity B and they included interparticle pores between spicules and intraparticle pores within spicules. Much, but not all, of this porosity was occluded by the 1st and 2nd-generation cherts. Secondary porosity later developed in the rocks by meteoric dissolution accompanying sea-level falls and ensuing subaerial exposure. Secondary pore types include exhumed and enlarged primary pores, and also small to large vugs in the silicified spiculites. Fractures also are common in the rocks and formed during periods of subaerial
A minor amount of secondary porosity is present in the rocks in the form of isolated vugs within chert nodules (e.g., the nodules in Figure 2B) that formed by dissolution of remnant calcite that had not been replaced by chert. Much of the secondary porosity in the rocks formed prior to precipitation of the 3rd-generation chert as this chert tends to occlude porosity (see figure 2D).

In the two Rhodes Field cored wells analyzed, typical values of reservoir porosity and permeability range from: (i) in the first well, 9.6% to 27% (average 15%) and 0.1 md to as much as 337 md, respectively; and (ii) in the second well, 3.4% to 13.6% (average 10.5%) and <0.1 md to as much as 180 md, respectively (Figure 5). There is a trend of decreasing porosity with depth in the well that had the most core-based porosity-permeability data (Figure 5), which is consistent with a subaerial meteoric origin of the secondary pore system in the rocks.

Figure 3. - (A) Gross $^{18}O/^{16}O$ isotopic compositions of cherts in the Cowley versus depth in the sampled Continental #10 and #15 Harbaugh cores in Rhodes Field. (B) Covariant plot of the $^{18}O/^{16}O$ and ^{30}Si isotopic compositions of the three chert generations in the aforementioned cores.

Figure 4. - Diagrammatic representation of sequential chert diagenesis and porosity evolution in the Cowley in Rhodes Field.

Figure 5. - Reservoir porosity and permeability data in two representative cores in the Cowley Formation in Rhodes Field.
CONCLUSIONS

The Cowley Formation in Rhodes Field in Barber County, Kansas comprises a depositional sequence that is unconformably sandwiched between the underlying Osagean and overlying Meramecian sequences. Lithologies in the internally cyclic Cowley section shallow upward from basinal dark spiculitic shale, to lenticular and/or flaser-bedded spiculite in matrices of dark gray shale (slope deposits) to green shale (moderate water-depth, outer-platform deposits), to shallow platform bedded spiculite, locally with some fossils. Three generations of replacement chert are recognized in the rocks (1st, 2nd, and 3rd), and based on paragenetic relationships and stable oxygen and silicon isotope geochemistry, their inferred origins are: (i) 1st-generation chert B precipitated from marine pore fluids essentially syndepositionally; (ii) the 2nd and 3rd-generation cherts - precipitated from mixed meteoric-marine to progressively more meteoric groundwaters during periods of lowstand subaerial exposure. Secondary porosity formed in the rocks by meteoric dissolution between chert generations 1 and 2, and the 3rd-generation chert tends to occlude some of this porosity.

ACKNOWLEDGEMENTS

The authors wish to acknowledge financial support from the Office of Research Administration and the Department of Geology at Wichita State University to Hongsheng Cao. We appreciate Woolsey Operating Co., LLC for providing the cores for this research. We are also grateful to Prof. Tiping Ding and Dr. S.H. Tian (Stable Isotope Geochemistry Laboratory, Institute of Mineral Resources, Chinese Academy of Geological Sciences) for isotopic analyses of the cherts examined in this study. Oral versions of this paper were presented by the senior author at the 2007 Mid-Continent Section AAPG meeting in Wichita, and a month later at a noon luncheon meeting of the Kansas Geological Society.

REFERENCES

Franseen, E.K., 2006, Mississippian (Osagean) shallow-water, mid-latitude siliceous sponge spicule and heterozoan carbonate facies: an example from Kansas with implications for regional controls and distribution of potential reservoir facies; *Current Research in Earth Sciences, Bulletin* 252, part 1, p. 1-23.
Pisciotta, K.A., 1981a, Diagenetic trends in the siliceous facies of the Monterey Shale in the Santa Maria region, California; *Sedimentology*, v. 28, p. 547-571.
ADVERTISER’S DIRECTORY

Abercrombie RTD, Inc 18
Allied Cementing Company, Inc 18
Duke Drilling 18
GeoCare Services AAPG 8
Kansas Geological Foundation 23
Lockhart Geophysical 18
LogSleuth 25
MBC 8
Murfin Drilling Company, Inc 18
Olsson Associates 13
PARAGON Geophysical Services, Inc 13
Petrobase 18
Professional Directory 19
Sunrise Oilfield Supply 18
TGS-NOPEC Geophysical Company 2
Trilobite Testing 6
Tucker Wireline Services 13
Walters Digital Library 8
Weatherford 27

ADVERTISER’S RATES: 2006

<table>
<thead>
<tr>
<th>Format</th>
<th>B&W</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Page</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 issues</td>
<td>$2,000</td>
<td>$2,500</td>
</tr>
<tr>
<td>3 issues</td>
<td>$1,080</td>
<td>$1,325</td>
</tr>
<tr>
<td>1 issue</td>
<td>$480</td>
<td>$525</td>
</tr>
<tr>
<td>1/2 Page</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 issues</td>
<td>$1,000</td>
<td>$1,500</td>
</tr>
<tr>
<td>3 issues</td>
<td>$540</td>
<td>$825</td>
</tr>
<tr>
<td>1 issue</td>
<td>$225</td>
<td>$350</td>
</tr>
<tr>
<td>1/4 Page</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 issues</td>
<td>$600</td>
<td>$900</td>
</tr>
<tr>
<td>3 issues</td>
<td>$325</td>
<td>$525</td>
</tr>
<tr>
<td>1 issue</td>
<td>$150</td>
<td>$250</td>
</tr>
<tr>
<td>1/8 Page</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 issues</td>
<td>$300</td>
<td>$500</td>
</tr>
<tr>
<td>3 issues</td>
<td>$175</td>
<td>$325</td>
</tr>
<tr>
<td>1 issue</td>
<td>$75</td>
<td>$185</td>
</tr>
<tr>
<td>Professional Ad (Business Card)</td>
<td>$90</td>
<td>$180</td>
</tr>
</tbody>
</table>

Note: Full page, 1/2 page and 1/4 page ads receive an ad space in the KGS Directory at no additional charge.
10 Drilling Rigs
For contract information, please contact:
Blaine Miller / Drilling Department
316-858-8607 (Direct) or 316-267-3241
250 N. Water #300—Wichita, KS 67202

Lockhart Geophysical Company
Call (303) 592-5220 FAX (303) 592-5225
Or E-mail lockden@xpert.net
2D & 3D Seismic Acquisition
Vibroseis Specialists
JAPEX GDAPS-4 Distributed System
We'll give you seismic excellence
Kirk Rundle
Consulting Geophysicist
3D Seismic Design, Acquisition to Processing QC., Interpretation and Analysis, Subsurface Integration
7340 W. 21st. N., Ste. 100
Wichita, Kansas 67205
Office: 316-721-1421 Fax: 316-721-1843
Home: 316-721-8962 Email: krundle@swbell.net

ROGER L. MARTIN
Independent/Consultant
Petroleum Geologist
200 East First Street, Ste. 405
Wichita, Kansas 67202
Office 620-438-2000
Cell: 316-250-6970
Field Cell: 316-655-1227
Email: rogermartingeo@yahoo.com

DON V. RIDER
Consulting Petroleum Geologist
Well Site Supervision
Geological Studies
Completions
8910 W. Central Park Ct.
Wichita, KS 67205
Office PH: 316-729-4445
Cell PH: 316-706-7199

ALFRED JAMES III
Petroleum Geologist
Kansas - Colorado - Alaska
SIPES #1111
Wichita, Kansas 67202
Off: (316) 267-7592

LANG J. FUQUA
Certified Petroleum Geologist
4201 Tanglewood Ln.
Frisco, Texas 75035

WESLEY D. HANSEN
Consulting Geologist
Well site Supervision
Geologic Studies
212 N. Market, Ste 257
Wichita, Kansas 67202
Off: (316) 263-7313
Mobile: (316) 772-6188

KEVIN L. KESSLER
Independent/Consulting Petroleum Geologist
Wellsite Supervision & Geologic Research
Oil & Gas Prospects
Kansas & Eastern Colorado
Mailing Address
1199 N. Ponderosa Rd.
Belle Plaine, KS 67013
Pres.: (316) 522-7338
Ph.: (316) 522-7338
Email: kkessler1199@aol.com

M. Bradford Rine
Honorary Life Member—Kansas Geological Society
Licensed Geologist—KS. #204
Registered Professional Geologist—Wyo. #189
Certified Geologist—A.A.P.G. #2647
S.P.E. #10893-4
PROSPECT EVALUATION • PROSPECT GENERATION
WELLSITE SUPERVISION • EXPERT TESTIMONY • OPERATIONS
PROPERTY EVALUATION • RESERVOIR STUDIES
DEIGL & COHP. CONSULTATION
Suites 415
306 S. Main
Wichita, KS 67202
Office: (316) 262-5418
Fax: (316) 264-1328
Cell: (316) 772-6839

ROBERT J. GUTRU
Geologist
300 Farmers & Bankers Bldg.
200 East First Street
Wichita, Kansas 67202
Off: (316) 265-3402

MELLAND ENGINEERING
Petroleum Engineering & Geological Consulting
James E. Melland, P.E.
Owner
Office: (620) 241-4621 Fax: (620) 241-2621
Cell Phone: (661) 319-5950
Email: jamelland@sbcglobal.net
Jamesm@mellandengineering.com
P.O. Box 841, McPherson, KS 67460

KGJ ENTERPRISES
Contract Oil & Gas Accounting & Office Management
Kathryn G. James, MBA
4278 SW 100th ST.
Augusta, KS 67010
(316) 775-0954
(316) 775-0954

www.kgslibrary.com
Help Wanted!
Integration Project

If you have any time you could give to the Library, we have projects that could move a little faster with some Expert Professional Geologists.

Just a few hours a week would make such a difference.

To volunteer, please contact Ted Jochems or Rebecca at the Library 265-8676

The on-line bulletin is now in pdf Format

Check out the complete KGS Bulletin on our web site www.kgslibrary.com

A simple way to help your Society save money would be to let us know if you like viewing the Bulletin on line. This would allow us to reduce our mailing & printing costs of sending the Bulletin to every member.

We are glad to keep mailing it to you but if you are satisfied with reading on-line, please just let us know.

316-265-8676

AAPG
Annual Meeting

April 20-23
San Antonio, Texas

(KGS will be in booth 3154)

www.kgslibrary.com
Exploration Highlights

By John H. Morrison, III
Independent Oil & Gas Service

(1) IA Operating, Inc. has discovered oil deposits in the Lansing-Kansas City ‘C’ zone at their Ella Mae #34-1, located in the NE/4 of section 34- T2s- R24W, Norton County. The wildcat well found new reserves over one mile north of abandoned oil production in the Oronoque Field, which also produced crude from the LKC for about three years beginning in 1979. The Ella Mae discovery recovered 2740 ft. of clean oil, no water, during Drill Stem Test. Shut-in pressure registered 1165 psi. After the pay zone was perforated at an undisclosed depth, the zone was swab tested at a rate of 19 barrels of oil per hour, no water, naturally. Pumping equipment is currently being installed at site six miles west of Norton, Kansas. The new field has been named Ella Mae.

(2) Independent John O. Farmer, Inc. has discovered crude oil trapped in the Arbuckle formation at a discovery site in Russell county. The Larosh #1 is pumping an undetermined amount of oil at site three-quarter miles east of the Worley South Field in the SW/4 of section 3- T11s- R15W. The wildcat well was drilled to a total depth of 3410 ft. by Discovery Drilling. Pay zone was perforated with hole plugged-back to a depth of 3389 ft. Site is located three and one-quarter miles west of Paradise, Kansas. The new field has been named Fairport Northeast.

(3) R. L. Investment LLC has discovered a new Mississippian oil field about seven miles northwest of Ransom, Kansas. The new Kinderknecht Field was discovered by the Kinderknecht #1, spotted in the SW/4 of section 13- T11s- R24W, which was placed on pump for an undisclosed rate in October last year. WW Drilling tools drilled the Trego County well to a total depth of 4350 ft. Closest known production to the new discovery lies nearly one and one-quarter miles southwest in the Hille Field where the Marmaton formation has produced oil.

(4) A new oil field that is producing from the Marmaton (Fort Scott) limestone has been established by Hartman Oil Company in Hodgeman County. The Frusher Farms #1, spotted in the NE/4 of section 7- T21s- R22W, is pumping crude at an undisclosed volume at site located eight and one-half miles northwest of Hanston, Kansas. Exploration focused on area over three-quarters mile west of the Wieland Northwest Field (Mississippian oil). The field has been named Frusher Farms.

(5) Carmen Schmitt, Inc. has opened two new oil fields in Lane County. The #1 Ehmke is producing an undisclosed amount of oil from the Marmaton formation to open the Mammoth Kill Field. The discovery, spotted in the NE/4 of section 2- T19s- R30W, lies nearly two miles from other production in the area.

(6) In addition, the #1 Louise is producing Lansing-Kansas City oil at site located in the NE/4 of section 1- T19s- R30W. The well opens the Dull Knife Field. The new oil deposits were found over two miles north of the Clark (Marmaton oil) Field. Both wells lie about three miles southeast of Amy, Kansas.

(7) Shelby Resources LLC has completed two new oil discoveries in south central Kansas. The #1-18 Hoffman, NE/4 of section 18- T17s- R13W, is producing an unknown amount of oil from the
Arbuckle formation. The Barton County well found deposits three-quarter mile north of the Foughty Field, about three miles north of Hoisington, Kansas. Also, the #1-25 Horney has been completed as a Simpson Sand oil producer in the NW/4 of section 25- T29s- R14 in Pratt County. The 4750 ft deep well found isolated reservoir three-quarters mile southwest of production in the Coats Field. no details have been released. The two new fields have not been named.

(8) Marmaton and Cherokee formations are producing oil at an unknown rate at the Steele #1-21 in Lane county. Operated by Larson Engineering, Inc., the new unnamed pool discovery found oil deposits at site located in the SW/4 of section 21- T18s - R30W, about two miles west of Amy, Kansas. Rotary total depth is 4640 ft. The well was completed and put on pump on December 10, 2007. Robert E. Lewellyn was wellsite geologist.

(9) Mull Drilling Company is producing an undetermined amount of oil from perforations in the Lansing-Kansas City and Marmaton zones at their Schneider #1-12 in Lane County. Located in the SW/4 of section 12- T17s- R28W, the wildcat well found new reserves three-quarters mile south of existing production in the Schmeig Field (LKC oil). Operator hired WW Drilling tools to drill the well to a total depth of 4695 ft. The unnamed field lies four and one-half miles southeast of Shields, Kansas.

(10) In Ford County, natural gas reserves have been discovered nearly three and one-half miles from the Steel Field by Ritchie Exploration, Inc. Discovery well is the #1 Lamb-Lance, NW/4 of section 8- T28s- R22W, located about one-quarter mile south of the city of Ford, Kansas. The well was drilled to a total depth of 5950 ft. No details have been released. The new discovery opens the Lamb Field.

(11) Ritchie Exploration, Inc. has also established the new Cramer Field in Lane County with the completion of the Cramer-Martin #1. The well is producing oil from the Pleasanton formation at an undisclosed rate. Well spot is in the SE/4 of section 35- T17s- R30W, about five miles southeast of Healy, Kansas. Rotary total depth is 4590 ft.
The Kansas Geological Foundation was founded in March, 1989 as a not-for-profit corporation under the guidelines of section 501(c)(3) of the tax code to provide individuals and corporations the opportunity to further the science of geology. It is dedicated to providing charitable, scientific, literary and educational opportunities in the field of geology for the professional geologist as well as the general public.

KGF can receive in-kind donations through which the donor may receive a tax deduction. Of equal importance, the KGF provides the financial resources to sort, process and file this data at the KGS library. If you have a donation to make, please contact the KGF at 265-8676.

Your tax-deductible membership donation helps to defray the cost of processing donations and to support public education programs about the science of geology. Annual membership begins at $50.00 per year. Donations of $100.00 or more are encouraged through the following clubs:

- **Century Club** $ 100 to $ 499
- **$500 Club** $ 500 to $ 999
- **Millennium Club** $1000 to $5000
- **President's Club** $5000 and over

Kansas Geological Foundation Services

The Kansas Geological Foundation provides the following services as a part of the organization’s commitment to educate the public regarding earth science.

Speaker's Bureau

A list of speakers available to talk about various aspects of geology may be obtained by contacting Janice Bright at the KGS Library, 265-8676. This service is free to the public.

DVD/Videotape Library

The KGF maintains a DVD & videotape library focused primarily on the various fields of earth science. These tapes may be checked out without charge by the public. To obtain a list of tapes, please contact the KGS Library, 212 N. Market, Ste. 100, Wichita, KS 67202, or call Janice Bright at 265-8676.
The Kansas Geological Society wishes to thank the following
For their support in making our 2nd Annual Geofest possible

R.D. "Gus" Messinger * Robert D. Cowdery * Ernie Morrison
Falcon Exploration, Inc. * Alan DeGood * Lotus Operating Company
Terra Firma Exploration * Bittersweet Energy, Inc.
Philip & Christine Knighton * Abercrombie Energy, LLC
A. Scott Ritchie * Perry Hand * Geotechnical Services, Inc.

Great Information…………….Thanks to the Survey for hosting this event
U.S.A.
LOGS FOR:
ALABAMA
ALASKA
ARKANSAS
ARIZONA
CALIFORNIA
COLORADO
FLORIDA
IDAHO
ILLINOIS
INDIANA
KANSAS
LOUISIANA
MICHIGAN
MISSOURI
MISSISSIPPI
MONTANA
NEBRASKA
NEVADA
NEW MEXICO
NORTH DAKOTA
OKLAHOMA
OREGON
SOUTH DAKOTA
TEXAS
UTAH
WASHINGTON
WEST VIRGINIA
WYOMING

CANADIAN
LOGS FOR:
ALBERTA
BRITISH COLUMBIA
SASKATCHEWAN
MANITOBA
FEDERAL AREAS

1-800-310-6451
SALES@MJLOGS.COM
CALGARY • DENVER

www.kgslibrary.com
Kansas Geological Foundation Memorials

<table>
<thead>
<tr>
<th>KGS Member</th>
<th>Date Deceased</th>
<th>Memorial Established</th>
<th>KGS Member</th>
<th>Date Deceased</th>
<th>Memorial Established</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dan Bowles</td>
<td>09/89</td>
<td>1990</td>
<td>Warren E. Tomlinson</td>
<td>01/00</td>
<td>2000</td>
</tr>
<tr>
<td>John Brewer</td>
<td>10/89</td>
<td>1990</td>
<td>James A. Morris</td>
<td>01/00</td>
<td>2000</td>
</tr>
<tr>
<td>George Bruce</td>
<td>08/89</td>
<td>1990</td>
<td>Eric H. Jager</td>
<td>03/00</td>
<td>2000</td>
</tr>
<tr>
<td>Robert Gebhart</td>
<td>01/90</td>
<td>1990</td>
<td>Kenneth W. Johnson</td>
<td>03/00</td>
<td>2000</td>
</tr>
<tr>
<td>Ray Anderson, Jr.</td>
<td>11/90</td>
<td>1990</td>
<td>Dean C. Schaake</td>
<td>03/00</td>
<td>2000</td>
</tr>
<tr>
<td>Harold McNeil</td>
<td>03/91</td>
<td>1991</td>
<td>Fred S. Lillibridge</td>
<td>05/00</td>
<td>2000</td>
</tr>
<tr>
<td>Millard W. Smith</td>
<td>08/91</td>
<td>1991</td>
<td>Jerry A. Langehr</td>
<td>07/00</td>
<td>2000</td>
</tr>
<tr>
<td>Clinton Engstrand</td>
<td>09/91</td>
<td>1991</td>
<td>Clark A. Roach</td>
<td>07/00</td>
<td>2000</td>
</tr>
<tr>
<td>James & Kathryn Gould</td>
<td>11/91</td>
<td>1991</td>
<td>Ralph W. Ruuwe</td>
<td>09/00</td>
<td>2000</td>
</tr>
<tr>
<td>E. Gail Carpenter</td>
<td>06/91</td>
<td>1993</td>
<td>Robert L. Slamal</td>
<td>02/01</td>
<td>2001</td>
</tr>
<tr>
<td>Benton Brooks</td>
<td>09/92</td>
<td>1992</td>
<td>Jerold E. Jesperson</td>
<td>06/01</td>
<td>2001</td>
</tr>
<tr>
<td>Robert C. Armstrong</td>
<td>01/93</td>
<td>1993</td>
<td>William A. Sladek</td>
<td>06/01</td>
<td>2001</td>
</tr>
<tr>
<td>Nancy Lorenz</td>
<td>02/93</td>
<td>1993</td>
<td>Harlan B. Dixon</td>
<td>06/01</td>
<td>2001</td>
</tr>
<tr>
<td>Norman R. Stewart</td>
<td>07/93</td>
<td>1993</td>
<td>Edward B. Donnelly</td>
<td>08/01</td>
<td>2001</td>
</tr>
<tr>
<td>Robert W. Watchous</td>
<td>12/93</td>
<td>1993</td>
<td>Richard P. Nixon</td>
<td>02/02</td>
<td>2002</td>
</tr>
<tr>
<td>J. George Klein</td>
<td>07/94</td>
<td>1994</td>
<td>Robert W. Frensley</td>
<td>12/01</td>
<td>2002</td>
</tr>
<tr>
<td>Harold C.J. Terhune</td>
<td>01/95</td>
<td>1995</td>
<td>Gerald W. Zorger</td>
<td>01/02</td>
<td>2002</td>
</tr>
<tr>
<td>Carl Todd</td>
<td>01/95</td>
<td>1995</td>
<td>Don L. Calvin</td>
<td>03/02</td>
<td>2002</td>
</tr>
<tr>
<td>Don R. Pate</td>
<td>03/95</td>
<td>1995</td>
<td>Claud Sheats</td>
<td>02/02</td>
<td>2002</td>
</tr>
<tr>
<td>R. James Gear</td>
<td>05/95</td>
<td>1995</td>
<td>Merle Britting</td>
<td>2002</td>
<td>2002</td>
</tr>
<tr>
<td>Vernon Hess</td>
<td>06/95</td>
<td>1995</td>
<td>Harold Trapp</td>
<td>11/02</td>
<td>2002</td>
</tr>
<tr>
<td>E. K. Edmiston</td>
<td>06/95</td>
<td>1995</td>
<td>Donald M. Brown</td>
<td>11/02</td>
<td>2003</td>
</tr>
<tr>
<td>Jack Rine</td>
<td>07/95</td>
<td>1995</td>
<td>Elwyn Nagel</td>
<td>03/03</td>
<td>2003</td>
</tr>
<tr>
<td>Lee Cornell</td>
<td>08/95</td>
<td>1995</td>
<td>Robert Noll</td>
<td>09/03</td>
<td>2003</td>
</tr>
<tr>
<td>John Graves</td>
<td>10/95</td>
<td>1995</td>
<td>Benny Singleton</td>
<td>09/03</td>
<td>2003</td>
</tr>
<tr>
<td>Heber Beardmore, Jr.</td>
<td>09/96</td>
<td>1996</td>
<td>J. Mark Richardson</td>
<td>02/04</td>
<td>2004</td>
</tr>
<tr>
<td>Elmer "Lucky" Opfer</td>
<td>12/96</td>
<td>1996</td>
<td>John “Jack” Barwick</td>
<td>02/01</td>
<td>2004</td>
</tr>
<tr>
<td>Raymond M. Goodin</td>
<td>01/97</td>
<td>1997</td>
<td>Richard Roby</td>
<td>03/04</td>
<td>2004</td>
</tr>
<tr>
<td>Donald F. Moore</td>
<td>10/92</td>
<td>1997</td>
<td>Ruth Bell Steinberg</td>
<td>2004</td>
<td>2004</td>
</tr>
<tr>
<td>Gerald J. Kathol</td>
<td>03/97</td>
<td>1997</td>
<td>Gordon Keen</td>
<td>03/04</td>
<td>2004</td>
</tr>
<tr>
<td>James D. Davies</td>
<td>08/88</td>
<td>1997</td>
<td>Lloyd Tarrant</td>
<td>05/04</td>
<td>2004</td>
</tr>
<tr>
<td>R. Kenneth Smith</td>
<td>04/97</td>
<td>1997</td>
<td>Robert J. “Rob” Dietterich</td>
<td>08/96</td>
<td>2004</td>
</tr>
<tr>
<td>Robert L. Dilts</td>
<td>05/97</td>
<td>1997</td>
<td>Mervyn Mace</td>
<td>12/04</td>
<td>2004</td>
</tr>
<tr>
<td>Delmer L. Powers</td>
<td>06/72</td>
<td>1997</td>
<td>Donald Hoy Smith</td>
<td>04/05</td>
<td>2005</td>
</tr>
<tr>
<td>Gene Falkowski</td>
<td>11/97</td>
<td>1997</td>
<td>Richard M. Foley</td>
<td>06/05</td>
<td>2005</td>
</tr>
<tr>
<td>Arthur (Bill) Jacques</td>
<td>01/98</td>
<td>1998</td>
<td>Wayne Brinegar</td>
<td>06/05</td>
<td>2005</td>
</tr>
<tr>
<td>Bus Woods</td>
<td>01/98</td>
<td>1998</td>
<td>Jack Heathman</td>
<td>05/06</td>
<td>2006</td>
</tr>
<tr>
<td>Frank M. Brooks</td>
<td>03/98</td>
<td>1998</td>
<td>Charles Kaiser</td>
<td>09/06</td>
<td>2006</td>
</tr>
<tr>
<td>Robert F. Walters</td>
<td>04/98</td>
<td>1998</td>
<td>Rod Sweetman</td>
<td>08/06</td>
<td>2006</td>
</tr>
<tr>
<td>Stephen Powell</td>
<td>04/98</td>
<td>1998</td>
<td>Karl Becker</td>
<td>10/06</td>
<td>2006</td>
</tr>
<tr>
<td>Deane Jirrels</td>
<td>05/98</td>
<td>1998</td>
<td>Frank Hamlin</td>
<td>10/06</td>
<td>2006</td>
</tr>
<tr>
<td>Ann E. Watchous</td>
<td>08/98</td>
<td>1998</td>
<td>Robert W. Hammond</td>
<td>04/07</td>
<td>2007</td>
</tr>
<tr>
<td>Donald L. Hellar</td>
<td>11/98</td>
<td>1998</td>
<td>Pete Amstutz</td>
<td>05/07</td>
<td>2007</td>
</tr>
<tr>
<td>Joseph E. Rakaskas</td>
<td>01/99</td>
<td>1999</td>
<td>Charles Spradlin</td>
<td>05/07</td>
<td>2007</td>
</tr>
<tr>
<td>Robert and Betty Glover</td>
<td>10/96</td>
<td>1998</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Howard E. Schwerdtfeger</td>
<td>11/98</td>
<td>1999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W. W. "Brick" Wakefield</td>
<td>03/99</td>
<td>1999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. Richard Hoover</td>
<td>01/00</td>
<td>2000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
All Around You

Weatherford has always been driven by your needs.

Now, with the addition of Precision Energy Services we're continuing to build a world of skills, services and technologies that revolve – and evolve – around you.

The result?
An expanded global network of 25,000 people, 730 service bases and 87 manufacturing facilities in 100 countries. This increased local knowledge and service is there to support you anywhere, anytime. From midday in the Middle East to midnight in the middle of nowhere.

And with greatly strengthened capabilities in the critical evaluation skills of directional drilling and wireline logging, we can do even more to improve the profitability and productivity of your wells.

To see how our sphere of services can work for you, visit www.weatherford.com or contact either your Weatherford or former Precision Energy Services representative.

Drilling | Evaluation | Completion | Production | Intervention

© 2008 Weatherford International Ltd. All rights reserved. Incorporates proprietary and patented Weatherford technology.
March 2008

<table>
<thead>
<tr>
<th>SUN</th>
<th>MON</th>
<th>TUE</th>
<th>WED</th>
<th>THU</th>
<th>FRI</th>
<th>SAT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>St. Pat’s Day</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tech Talk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

April 2008

<table>
<thead>
<tr>
<th>SUN</th>
<th>MON</th>
<th>TUE</th>
<th>WED</th>
<th>THU</th>
<th>FRI</th>
<th>SAT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tech Talk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
</tr>
<tr>
<td>***** AAPG Meeting in San Antonio, Texas *****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Tech Talk | | | | | | |